JOINT TRANSPORTATION RESEARCH PROGRAM

INDIANA DEPARTMENT OF TRANSPORTATION AND PURDUE UNIVERSITY

Statistical Analysis of Safety Improvements and Integration into Project Design Process

Andrew P. Tarko, Mario Romero, Cristhian Lizarazo, Raul Pineda

RECOMMENDED CITATION

Tarko, A. P., Romero, M., Lizarazo, C., & Pineda, R. (2020). *Statistical analysis of safety improvements and integration into project design process* (Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2020/09). West Lafayette, IN: Purdue University. https://doi.org/10.5703/1288284317121

AUTHORS

Andrew P. Tarko, PhD

Professor of Civil Engineering and Director of Center for Road Safety Lyles School of Civil Engineering (765) 494-5027 tarko@purdue.edu Corresponding Author

Mario Romero, PhD

Research Scientist Lyles School of Civil Engineering Purdue University

Cristhian Lizarazo Raul Pineda

Graduate Research Assistants Lyles School of Civil Engineering Purdue University

JOINT TRANSPORTATION RESEARCH PROGRAM

The Joint Transportation Research Program serves as a vehicle for INDOT collaboration with higher education institutions and industry in Indiana to facilitate innovation that results in continuous improvement in the planning, design, construction, operation, management and economic efficiency of the Indiana transportation infrastructure. https://engineering.purdue.edu/JTRP/index_html

Published reports of the Joint Transportation Research Program are available at http://docs.lib.purdue.edu/jtrp/.

NOTICE

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views and policies of the Indiana Department of Transportation or the Federal Highway Administration. The report does not constitute a standard, specification or regulation.

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. FHWA/IN/JTRP-2020/09	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle Statistical Analysis of Safety Improvements	5. Report Date April 2020	
Process	6. Performing Organization Code	
7. Author(s) Andrew P. Tarko, Mario Romero, Cristhian	8. Performing Organization Report No. FHWA/IN/JTRP-2020/09	
9. Performing Organization Name and Ad Joint Transportation Research Program (SPR	10. Work Unit No.	
Hall for Discovery and Learning Research (I 207 S. Martin Jischke Drive West Lafayette, IN 47907	11. Contract or Grant No. SPR-4216	
12. Sponsoring Agency Name and Address Indiana Department of Transportation	13. Type of Report and Period Covered Final Report	
State Office Building 100 North Senate Avenue Indianapolis, IN 46204	14. Sponsoring Agency Code	

15. Supplementary Notes

Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration.

16. Abstract

RoadHAT is a tool developed by the Center for Road Safety and implemented for the INDOT safety management practice to help identify both safety needs and relevant road improvements. This study has modified the tool to facilitate a quick and convenient comparison of various design alternatives in the preliminary design stage for scoping small and medium safety-improvement projects. The modified RoadHAT 4D incorporates a statistical estimation of the Crash Reduction Factors based on a before-and-after analysis of multiple treated and control sites with EB correction for the regression-to-mean effect. The new version also includes the updated Safety Performance Functions, revised average costs of crashes, and the comprehensive table of Crash Modification Factors—all updated to reflect current Indiana conditions. The documentation includes updated Guidelines for Roadway Safety Improvements. The improved tool will be implemented at a sequence of workshops for the final end users and preceded with a beta-testing phase involving a small group of INDOT engineers.

17. Key Words	18. Distribution Statement					
roadway safety, safety management, scoping projects, crash modification factors		No restrictions. This document is available through the National Technical Information Service, Springfield, VA 22161.				
19. Security Classif. (of this report)	20. Security	Classif. (of this page)	21. No. of Pages	22. Price		
Unclassified	Unclassified		46 including			
			appendices			

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

EXECUTIVE SUMMARY

Introduction

A recent FHWA audit of INDOT's highway safety programs and procedures called for improvements in current procedures by incorporating safety considerations into the design of all INDOT and local projects. This outcome has prompted the INDOT Bridges and Highway Design Divisions to request the development of improved methods and software to evaluate the traffic safety implications of geometric design decisions. This report presents a study aimed to incorporate a systematic process for integrating the consideration of safety into project scoping and design.

The IHDSM, although calibrated to Indiana conditions in the recent JTRP study, is also suitable for large road projects; however, it requires designers' significant effort for preparing and entering the input. There is a need for a convenient tool for small and medium projects that can quickly and interactively facilitate a design process through to its completion.

This study was aimed to modify RoadHAT—a tool developed by the Purdue Center for Road Safety (CRS) and implemented for the INDOT safety management to facilitate a quick and convenient comparison of various design alternatives in the preliminary design stage for scoping small and medium safety-improvement projects.

Improvements

- Multiple design alternatives can be defined with different subsets of safety improvements, be saved, and then compared.
- Individual design changes of a segment roadway may begin and end anywhere inside a considered segment.

- Target crashes are introduced for each countermeasure as a percent of crashes at three levels of crash severity to make the analysis versatile and more accurate.
- The use of target crashes through a percent of all crashes at various severity levels enabled utilization of the existing safety performance functions in economic and before-andafter evaluation.
- Before-and-after studies of multiple treated and control sites can be facilitated with the improved tool.
- The statistical significance of safety improvement is estimated at the user-selected significance level.
- A provision for reading the crash location data allows the crash-countermeasure assignments made by the tool to considerably reduce the end-user's effort.
- Additional RoadHAT reports have been added for each design alternative, their comparison, and before-and-after studies.
- The Guidelines for Roadway Safety Improvements, Crash Reduction Factors, and Safety Performance Functions are updated.

Implementation

The RoadHAT 4D is a computer software developed in close collaboration with INDOT users. The project produced a modified RoadHAT tool with embedded documentation to help the end-user. Incorporation of the safety component in the early stage of design and post-construction evaluation will be supported with a sequence of workshops organized by the Business Owner and delivered by the Purdue CRS research team.

After the beta-testing phase, the developed tool will be distributed internally among INDOT units. The Purdue CRS will be involved in the RoadHAT 4D implementation by providing requested help, collecting the users' feedback, and implementing the recommendations.

CONTENTS

1.	INTRODUCTION	I
2.	RESEARCH OBJECTIVES AND SCOPE	1
3.	CONCEPT OF REVISED ROADHAT	1
4.	PREDICTING SAFETY BENEFITS OF ROAD IMPROVEMENTS 4.1 Intersections. 4.2 Segments.	2
5.	ESTIMATING CRASH REDUCTION FACTORS 5.1 Single Location	4
6.	UPDATING CRASH REDUCTION FACTORS	5
7.	STATISTICAL SIGNIFICANCE OF CRASH REDUCTION	5
8.	CLOSURE	6
R	EFERENCE	6
	PPENDICES Appendix A. Updated Safety Performance Functions	7

LIST OF TABLES

Table	Page
Table 7.1 Critical Value Z_c	5

1. INTRODUCTION

The Fixing America's Surface Transportation (FAST) Act established regulations that require state departments of transportation (DOTs) to analyze and report the resulting safety performance of traffic safety improvement projects that were previously constructed and funded under the Highway Safety Improvement Program (HSIP). The purpose of the federal regulation is to strive for superior decision making in the allocation of highway safety funds to reduce the incidence of crashes resulting in fatalities and severe injuries. Prior to federal fiscal year 2018, state DOT reporting of post construction safety performance was largely voluntary. The INDOT Office of Traffic Safety has undertaken comparative "before/ after" safety performance studies of previously completed HSIP projects; however, staff's current ability to calculate and report statistically significant analyses results is limited.

An appropriate methodology for the evaluation of traffic safety improvement projects is essential to identify the effectiveness of the implemented improvements or countermeasures and to quantify its benefits. A recent FHWA audit of INDOT's highway safety programs and procedures called for improvements in current procedures for incorporating safety considerations into the design of all INDOT and local projects. This outcome has prompted the INDOT Bridges and Highway Design Divisions to request development of improved methods and software to evaluate the traffic safety implications of geometric design decisions. This report presents a study aimed to incorporate a systematic process for integrating the consideration of safety into project scoping and design applied to existing roads that are selected for safety improvements.

The IHDSM, although calibrated to the Indiana conditions in the recent JTRP study (Tarko et al., 2018) is suitable for large road projects in mind and it requires designers' significant effort for preparing and entering the input. Yet, it does not support sequential decision-making in the course of design but rather it facilitates a selection of the most promising alternative from several alternatives already designed. Thus, there is a need for a convenient tool for small and medium projects that could facilitate a way to quickly and interactively review design alternatives within a design process up to its completion.

RoadHAT is a tool developed by the Center for Road Safety and successfully implemented to the INDOT safety management practice to help identify both the safety needs and the relevant road improvements. It does not allow a quick and convenient comparison of various preliminary design alternatives to facilitate projects scoping.

The applied research study reported in this document modified the existing RoadHAT 3 tool to incorporate its statistical analysis capability as part of post construction performance evaluations, principally Empirical-Bayes (EB) or some other statistical analysis methodology for various safety improvements on state and local highways. This software tool is supposed to support job scoping in the preliminary design stage for small and medium safety-improvement projects and to aid analyzing the post-construction performance of safety improvement projects. The envisioned new components were embedded in the existing RoadHAT 3 software as RoadHAT 4D. The new version also includes the updated Safety Performance Functions, revised average costs of crashes, and the comprehensive table of Crash Modification Factors updated to reflect the current Indiana conditions.

2. RESEARCH OBJECTIVES AND SCOPE

The scope of work includes analysis of the methodologies used in other states by studying the existing publications, research reports, and guidelines. The information relevant to the project topic will be compiled to determine the best practice process for both the evaluation of traffic safety improvement projects and for estimating the safety implications of geometric design decisions.

A computer application will be developed to incorporate statistical analysis capability as part of post construction performance evaluations. Performance measures will estimate safety benefits in terms of reduction in number of crashes and long term economic impacts.

The primary research objectives of the proposed project are as follows:

- 1. Develop a process for integrating road safety consideration into project scoping and design.
- Develop a methodology to evaluate traffic safety improvement projects and to update and apply CMFs when multiple countermeasures are proposed.
- 3. Expand the existing RoadHAT software by integrating the modules developed in Tasks 1 and 2.

3. CONCEPT OF REVISED ROADHAT

The new version—RoadHAT 4D—supports scoping of safety project for existing roads by allowing convenient generation of design alternatives at the level of detail possible before the preliminary design stage. A project alternative is defined with the existing road geometry and traffic control supplemented with the proposed safety countermeasures—changes of the road geometry and traffic control aimed to improve safety. Thus, the default reference alternative is by default donothing option. It is not explicitly represented among the alternatives. Instead, all explicitly stated alternatives are compared to the do-nothing alternative by estimating the safety benefits and the project costs.

An alternative is created in Form 5 by adding one or more countermeasures. Each countermeasure is defined with the following elements:

countermeasure name, possibly including a short description,

- part of road segment affected by the countermeasures (start and end points, only for segments),
- crash reduction factors by severity (three levels),
- percent of crashes that are affected at each severity level (target crashes),
- countermeasure capital cost,
- · change in the maintenance cost, and
- salvage value.

The cost components can be entered for every countermeasure if such cost assignments to specific countermeasures are possible. Otherwise, a dummy countermeasure with zero Crash Reduction Factors can be entered together with the capital cost, change in the maintenance cost, and salvage value applicable to multiple countermeasures. More than one dummy countermeasure may be used. The name and description of the dummy countermeasure may state which countermeasures are included in the cost components.

New countermeasures can be added and existing countermeasures may be copied or deleted. A copied countermeasure may be edited to create a new countermeasure that is not much different from the existing one (for example, different only by affected part of the segment).

Any project alternative can be saved under its own name. Any saved alternative can be read for modifications and saved under its own name or under a differed name to add a new alternative to the already saved ones.

Calculated economic components include the following:

- saved crashes by severity,
- annualized cost of all crashes saved,
- · annualized cost of the project,
- annualized net benefit, and
- B/C ratio.

Summary of the results of all saved alternatives are available for comparison in Form 6. User selects alternatives for comparing side by side from a list of all available alternatives. Any alternative already displayed for comparison can be removed. The comparison includes the alternative names, list of alterative names, and the economic components. A report saved by the user includes all the displayed alternatives.

Form 7 is added to facilitate the estimation of the Crash Modification Factors and to evaluate the effectiveness of the safety project in improving safety. The user may enter multiple roads with similar safety project applied to these roads. In addition, the user has an option to include control site in the analysis. A control site is a road without any road changes during the analysis period and similar to the road treated with safety countermeasures. A control site accounts for any overall changes in safety not related to the road improvements and caused by changes in traffic composition, weather, vehicle design, etc.

The effectiveness of the safety improvements are represented with the magnitude of crash reduction and with the statistical significance of this reduction. A statistically significant crash reduction has small

probability that the observed reduction was random and not systematic.

4. PREDICTING SAFETY BENEFITS OF ROAD IMPROVEMENTS

4.1 Intersections

Safety performance function (SPF) for an intersection is:

$$a = kQ_1^{\gamma_1}Q_2^{\gamma_2}$$
 (crashes/year)

And the EB estimate of the expected annual number of crashes is:

$$a_{EB} = \frac{C + 1/\alpha}{Y + 1/(\alpha a)}$$

where: a_{EB} is EB-estimate of the expected number of crashes at the intersection (crashes/year), C is the number of crashes during Y years, Q_1 and Q_2 are the AADTs on the major and minor roads in (1000s veh/h), k, γ_1, γ_2 are parameters, and a is over-dispersion.

The number of saved crashes of certain severity with the countermeasures applied at intersections is:

$$b = a_{EB}CRF$$

with Crash Reduction Factor CRF, that represents multiple safety countermeasures applied at the intersection, being calculated as:

$$CRF = 100 \cdot \left[1 - \prod_{j=1}^{n} \left(1 - \frac{PT_j}{100} \cdot \frac{CRF_j}{100} \right) \right]$$

where:

CRF= combined Crash Modification Factor representing the effect of all countermeasures applied at the intersection,

 PT_j = percent of crashes of certain severity are target crashes for countermeasure j,

 CRF_j = Crash Reduction Factor of countermeasure j.

4.2 Segments

The total number of crashes on the segment C and the segment length is L. A safety performance function (SPF) for a segment is:

$$a = kL^{\beta}O^{\gamma}$$

where: a is the expected number of crashes on the segments (crashes/year), L is the segment length (mi), Q is the AADT in (1000s veh/h), k,β,γ are parameters, and a is over-dispersion.

The total number of crashes on the segment C. Let the segment be divided into sub-segments of lengths: l_1, l_2 , and lm with crash counts: c_1, c_2 , and c_m . The SPF-based expected number of crashes on any sub-segment i is:

$$a_i = \left(\frac{l_i}{L}\right) k L^{\beta} Q^{\gamma} = k l_i L^{\beta - 1} Q^{\gamma}$$

and the *initial* EB-based expected number of crashes a_{Bi} on any sub-segment i is:

$$a_{Bi} = \frac{c_i + 1/\alpha}{1 + 1/(\alpha a_i)}$$

Where c_i = is the number of crashes on sub-segment i. The EB-based total number of crashes on the segment is:

$$a_{EB} = \frac{C + 1/\alpha}{1 + 1/(\alpha a)}$$

The *adjusted* EB-based expected number of crashes a_{EBi} on any sub-segment i is:

$$a_{EBi} = a_{EB} \frac{a_{Bi}}{\sum_{i} a_{Bi}}$$

$$CRF_i = 100 \cdot \left[1 - \prod_{j=1}^{j=n_i} \left(1 - \frac{PT_{i,j}}{100} \cdot \frac{CRF_{i,j}}{100} \right) \right]$$

where:

 CRF_i = combined Crash Modification Factor representing the effect of all countermeasures applied on sub-segment i,

 $PT_{i,j}$ = percent of crashes of certain severity on sub-segment i that are target crashes for countermeasure i.

 $CRF_{i,j}$ = Crash Reduction Factor of countermeasure j applied on segment i.

The number of crashes of certain severity saved on the entire segment is:

$$b = \sum_{i=1}^{m} a_{EBi} CRF_i$$

When the distribution of crashes among subsegments is not known, the simplest approximation is based on the assumption that the crashes are distributed in proportion of the sub-segment lengths. Thus:

$$b = \sum_{i=1}^{m} \left(\frac{l_i}{L}\right) a_{EB} CRF_i$$

5. ESTIMATING CRASH REDUCTION FACTORS

The effectiveness of a safety project should be reevaluated after its implementation to provide feedback to the safety management process. This feedback helps improve future decision about specific safety improvement and prediction of their effectiveness. The post implementation study uses crash data collected before and after the project is implemented. Although the recommended periods before and after the implementation are three years for each period, longer periods increase the confidence of the results and should be considered. In all cases, the periods should be multiples of full years to eliminate the undesirable effect of seasonal variations of crashes. Other data needed for a post-implementation study include actual project

costs, annual maintenance costs, traffic growth rate, and average daily traffic volumes.

The outcome from the post implementation study includes the following: updated crash reduction factor (CRF) and the measures of economic effectiveness (B/C ratio, net annual benefits, and present worth of total net benefit). The method of analysis is the same as presented in chapter 6. The difference is the updated inputs. The following sections present the most difficult component of post implementation study—estimating and updating crash reduction factors. The method is introduced gradually by consideration of a single site. Then, a control site is added to account for safety factors other than the safety project. Next, a case of multiple treated and control sites is presented. Finally, a method of combining the new crash reduction factors with the existing one is shown.

5.1 Single Location

Crash Reduction Factors are used in calculating benefits provided by a safety project as the percent of original crashes reduced by the implementation of the safety project. The crash reduction factor for the project is calculated using crash reported before and after implementing the safety project. Expected crash frequency a_{0A} in the period after implementation of a safety project, had the safety project not been implemented, is calculated to account for the "regressionto-mean effect" and for the change in traffic volume. The available safety performance functions estimate the frequency of all crashes at different levels of severity while some CRFs are applicable only to, so-called, target crashes to account for the fact that a considered countermeasure affects only some type of crashes. For example, installing a median barrier reduces headon collisions. This is accounted for in the calculation with the percent of target crashes (PT) that is used to reduce the crash frequencies estimated with safety performance functions to the frequency of target crashes.

The crash reduction factor for the implemented safety project CRF_2 and its standard deviation are calculated. Crash reduction factors are estimated for all crashes, incapacitating injury and fatal (NI) crashes, non-incapacitating injuries (NI) crashes, and property damage only (PD) crashes separately.

$$a_{0A} = \frac{\frac{1}{D} + C_B}{\frac{100}{D \cdot PT \cdot a_B} + Y_B} \cdot \left(\frac{a_A}{a_B}\right)$$

$$a_{1A} = \frac{C_A}{Y_A}$$

$$var \ a_{0A} = \frac{\frac{1}{D} + C_B}{\left(\frac{100}{D \cdot PT} + Y_B\right)^2} \cdot \left(\frac{a_A}{a_B}\right)^2$$

$$var \ a_{1A} = \frac{C_A}{Y_A^2}$$

$$CRF_2 = 100 \left(1 - \frac{a_{1A}}{a_{0A}} \right)$$

$$SD_2 = 100\sqrt{\frac{var\ a_{1A}}{a_{0A}^2} + \frac{a_A^2\ a_{0A}}{a_{0A}^4}}$$

where:

 a_{0A} = best estimate of the target crash frequency in the period after the implementation of safety project, had the safety project not been implemented, this estimate is the combination of crash counts and the result obtained with a safety performance function,

 a_{1A} = target crash frequency estimate for the period after the project implementation, this estimate is based on crashes that occurred at the improved site,

 a_A = crash frequency (total of target and non-target crashes) calculated with a safety performance function and for traffic representing the after-implementation period,

 a_B = crash frequency (total of target and non-target crashes) calculated with a safety performance function and for traffic representing the before-implementation period,

 C_A = number of reported target crashes (affected by the countermeasure) that occurred during the period after the implementation of safety project,

 C_B = number of target crashes that occurred during the period before the implementation of safety project,

 CRF_2 = crash reduction factor estimate, in percent,

D= over-dispersion parameter associated with the safety performance function used to calculate a_A and a_B

PT= percent of crashes that are affected by the countermeasure (target crashes), in percent,

 SD_2 = standard deviation of the crash reduction factor estimate for the implemented safety project, in percent,

var a_{0A} = variance of a_{0A} estimate,

var a_{1A} = variance of a_{1A} estimate,

 Y_B = number of before-implementation years with crash data, and

 Y_A = number of after-implementation years with crash data.

5.2 Estimating Cash Reduction Factors Using a Control Site

In order to account for unknown factors that may cause a change in the number of crashes after implementation of the safety project, crash reduction factors are calculated using a control group, which consists of locations that have characteristics similar to locations where the safety project is implemented, but at these locations the safety project is not implemented. The expected number of crashes per year in the period after implementation of the safety project assuming no road

improvement, $a_{0.4}$, and the number of crashes per year during the period after the implementation of the safety project, $a_{1.4}$, are calculated for the treated sites. The same equations are used to calculate $a'_{0.4}$ and $a'_{1.4}$ for the control site. The before and after periods for the control site should match the corresponding period for the treated site. A, so-called, crash reduction θ is the ratio of $a_{1.4}$ and $a_{0.4}$:

$$\theta = \frac{a_{1A}}{a_{0A}}$$

The variance of θ estimate is:

$$var \ \theta = \left(\frac{1}{a_{0A}}\right)^2 \cdot var \ a_{1A} + \left(\frac{a_{1A}}{a_{0A}^2}\right)^2 \cdot var \ a_{0A}$$

The corresponding ratio θ' is calculated for the control sites using a'_{1A} and. a'_{0A} Its variance of θ' estimate for the control site is calculated with the same equation of the variance of θ estimate.

The crash reduction factor CRF_2 , which includes the adjustment for safety factors other than the safety project and the change in traffic volume, is estimated as follows:

$$CRF_2 = 100\left(1 - \frac{\theta}{\theta'}\right)$$

The variance of the CRF_2 estimate is calculated as follows:

$$SD_2 = 100\sqrt{\left(\frac{1}{\theta'}\right)^2 \cdot var \ \theta + \left(\frac{\theta}{\theta'^2}\right)^2 \cdot var \ \theta'}$$

where

 θ = crash reduction at the location with treated group,

 $var \theta = variance of \theta estimate,$

 θ' = crash reduction at the location with control group,

 $var \theta' = variance of \theta' estimate,$

 CRF_2 = crash reduction factor after implementing the safety project, in percent, and

 SD_2 = standard deviation of the crash reduction factor for the implemented safety project, in percent.

5.3 Estimating Crash Reduction Factors Based on Multiple Locations

Crash reduction factors are key inputs to estimating safety benefits. They should be as accurate as possible. One of the methods of improving accuracy and precision of crash reduction factors estimates is using multiple treated and control sites. It is required that all the treated sites included in the analysis undergo the same type of improvement. The control group of sites where no improvements are implemented should be in the same geographical area as the treated sites. The average before periods for the treated and control sites

should be the similar. The same is required for the average after period.

Modernization of different sites takes place in different years. To preserve the adjusting capabilities of the control sites, each of the treated sites should have at least one control site of the same type and similar characteristics, if possible. The treated and corresponding control sites should be similar and have the same before periods and the same after periods.

The idea of analyzing multiple sites is to aggregate the treated sites and the control sites into two single entities. This aggregation allows using the equations already developed for single sites. The first step is to estimate the annual number of crashes and the variance of this estimate for each treated and control site for the before and after periods using equation presented above. Then, the annual frequencies and their variances are summed up to obtain singles values representing the treated group of sites. The same aggregation operation is done for the control group. After this aggregation, the estimation method applicable to a single treated site with a single control site presented above is used.

$$a_{1A} = \sum_{i} a_{Ai}$$

$$var \ a_{1A} = \sum_{i} var \ a_{1Ai}$$

$$a_{0A} = \sum_{i} a_{0Ai}$$

$$var \ a_{0A} = \sum_{i} var \ a_{0Ai}$$

The above summation over multiple sites is done for crashes at each of the three severity levels, (incapacitating IN, non-incapacitating NI, and property damage only PD) or for all crashes regardless of the severity. Thus, the obtained estimates: a_{1A} , var a_{1A} , a_{0A} , var a_{0A} , apply to each of the three severity levels or two all crashes.

6. UPDATING CRASH REDUCTION FACTORS

This section describes the calculations of the crash reduction factor applicable to crash counts at three severity levels and to all crash count as well. The calculated values are then combined with the existing crash reduction factors (if available) to obtain the best estimates of the crash reduction factors.

Let CRF_1 stand for the old crash reduction factor taken from Appendix C, while CRF_2 is calculated. The updated crash reduction factor, CRF, is calculated using the CRF_1 and CRF_2 estimates and their standard deviations SD_1 and SD_2 respectively:

$$CRF = \frac{SD_1^2 \cdot CRF_2 + SD_2^2 \cdot CRF_1}{SD_1^2 + SD_2^2}$$

where:

CRF= updated crash reduction factor, percent,

 SD_1 = standard deviation of the old crash reduction factor estimate (assume 25% if not available), in percent, and

 SD_2 = standard deviation of the new crash reduction factor estimate for the implemented safety project, in percent.

The standard deviation of the updated crash reduction factor is calculated with standard deviations SD_1 and SD_2 , as follows:

$$SD = \sqrt{\frac{SD_2^4 \cdot SD_1^2 + SD_1^4 \cdot SD_2^2}{SD_1^2 + SD_2^2}}$$

where: SD_1 and SD_2 are the standard deviations of the old and updated crash reduction factors. The calculated SD becomes SD_1 when the crash reduction factor is updated again.

7. STATISTICAL SIGNIFICANCE OF CRASH REDUCTION

The agency may want to test the statistical significance of the effectiveness of a safety project to determine whether the reduction in crashes is large enough to reject the possibility that the reduction was caused solely by random fluctuations of crashes. A one-tail test is used to decide if the obtained crash reduction factor is significantly larger than zero. The estimate of the crash reduction factor is assumed to be normally distributed. The recommended significance levels are 1%, 5%, and 10%. The default value is 10%.

The significance for the safety change is performed at a user selected significance level. The choice of significance level depends on the project size (cost). A significance level of 5% can be used for large and expensive projects, while 10% may be used for small projects. The 10% significance level is considered typical in post-implementation studies.

Table 7.1 helps determine whether the reduction in crashes is significant at 1%, 5%, 10% significance level. If normalized value Z=CRF/SD is larger than the critical value Z_c , then the safety improvement is statistically significant at the selected level of significance.

TABLE 7.1 Critical Value Z_c

Significance Level (%)	Critical Value Z_c
1	2.33
5	1.65
10	1.28

8. CLOSURE

The project has produced a modified RoadHAT 4D tool with companion user's manual. The user manual is embedded in the installation package and available via a *Help* link included in each form. The manuals first page provides links to all parts, elements, and terms of the tool. A revised version of the Guidelines are also included to introduce and help interpret of the elements of the safety management concepts.

Incorporation of the safety component in the early stage of design should increase the effectiveness of the project in reducing the frequency and severity of crashes. The second component of the project: post-construction evaluation, should have two-fold benefit.

1. The tool confirms which projects were successful and why. This feedback may help refocus future investments on

- projects that have a higher chance of being successful, thus leading to an additional improvement of road safety—the ultimate goal of all safety-related efforts.
- The tool includes the components of the design methodology that should be tuned to produce better results.
 Specifically, two important improvements that need to be updated as needed are: (1) crash Modification Factors of road improvements, (2) costs of various road improvements.

REFERENCE

Tarko, A. P., Romero, M., Hall, T., & Sultana, A. (2018).
Updating the crash modification factors and calibrating the IHSDM for Indiana (Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2018/03). West Lafayette, IN: Purdue University. https://doi.org/10.5703/1288284316646

APPENDICES

Appendix A. Updated Safety Performance Functions

Appendix B. Revised Crash Costs

Appendix C. Updated Crash Modification Factors

APPENDIX A. UPDATED SAFETY PERFORMANCE FUNCTIONS

Table A.1 State Intersections

Safety Performance Function	Over-dispersion		
Signalized Urban State-State Intersection	Over-dispersion		
$a_{PD} = 8.3797 * 10^{-5} * AADT_1^{0.8077} * AADT_2^{0.4030} * e^{-0.4586*T_indicator}$	0.5415		
$a_{NI} = 1.7617 * 10^{-7} * AADT_1^{1.3787} * AADT_2^{0.1979}$	0.8926		
$a_{FI} = 2.8870 * 10^{-5} * AADT_1^{0.7071} * AADT_2^{0.3709} * e^{-0.6066*T_indicator}$	0.7130		
Signalized Rural State-State Intersection			
$a_{PD} = 3.8929 * 10^{-3} * AADT_1^{0.3891} * AADT_2^{0.4310} * e^{-0.4349*T_indicator}$	0.5547		
$a_{NI} = 1.3378 * 10^{-5} * AADT_{1}^{1.1265}$	0.7754		
$a_{FI} = 6.7616 * 10^{-2} * AADT_1^{0.2809} * e^{-0.7268*T_indicator}$	0.8429		
Unsignalized Urban State-State Intersection			
$a_{PD} = 2.2178 * 10^{-4} * AADT_1^{0.8481} * AADT_2^{0.2284} * e^{-0.7770 * T_indicator}$	0.7744		
$a_{NI} = 1.0243 * 10^{-6} * AADT_1^{1.2145} * AADT_2^{0.1612} * e^{-0.4759*T}$ indicator	1.4455		
$a_{FI} = 4.8134 * 10^{-5} * AADT_1^{0.7317} * AADT_2^{0.2595} * e^{-1.0369*T_{indicator}}$	1.2053		
Unsignalized Rural State-State Intersection			
$a_{PD} = 2.6126 * 10^{-4} * AADT_1^{0.7880} * AADT_2^{0.3119} * e^{-0.5454 * T_i indicator}$	0.6158		
$a_{NI} = 1.1176 * 10^{-5} * AADT_{\bullet}^{0.8521} * AADT_{\bullet}^{0.3304} * e^{-0.1353*T_{\bullet}indicator}$	0.9701		
$a_{FI} = 6.6626 * 10^{-5} * AADT_1^{0.8546} * AADT_2^{0.1977} * e^{-0.6778*T_indicator}$	0.7037		
Signalized Urhan State-Local Intersection			
$a_{PD} = 1.1165 * 10^{-2} * AADT_1^{0.6381} * e^{(-0.2427*T_{indicator} + 0.4581*FC34_{indicator})}$	0.6537		
$a_{NI} = 2.4457 * 10^{-4} * AADT_{\bullet}^{0.8247} * e^{(-0.2935*T_{indicator} + 0.3989*FC34_{indicator})}$	1.0684		
$a_{FI} = 1.4198 * 10^{-3} * AADT_1^{0.6178} * e^{(-0.2738*T_{indicator} + 0.3614*FC34_{indicator})}$	0.8425		
Signalized Rural State-Local Intersection			
$a_{PD} = 1.1701 * 10^{-4} * AADT_1^{1.1212} * e^{(-0.1860*T_{indicator} + 0.1525*FC34_{indicator})}$	0.6264		
$a_{NI} = 1.5849 * 10^{-5} * AADT_{+}^{1.0969} * e^{(0.3911*FC34_{indicator})}$	0.8634		
$a_{FI} = 1.3517 * 10^{-4} * AADT_1^{0.8833} * e^{(0.3985*FC34_{indicator})}$	0.9224		
Unsignalized Urban State-Local Intersection			
$a_{PD} = 2.1986 * 10^{-4} * AADT_1^{0.9320} * e^{(-0.5273*T_{indicator} + 0.8264*FC5_{indicator})}$	1.1808		
$a_{NJ} = 1.4185 * 10^{-6} * AADT_{1}^{1.2428} * e^{(-0.6126*T_{indicator} + 0.7643*FC5_{indicator})}$	1.7019		
$a_{FI} = 8.6677 * 10^{-6} * AADT_1^{1.0545} * e^{(-0.6311*T_{indicator} + 0.8778*FC5_{indicator})}$	1.6761		
Unsignalized Rural State-Local Intersection			
$a_{PD} = 1.8775 * 10^{-3} * AADT_1^{0.6820} * e^{(-0.3222*T_{indicator} + 0.5506*FC5_{indicator})}$	1.0219		
$a_{NI} = 3.1165 * 10^{-5} * AADT_{0}^{0.8953} * e^{(-0.5072*T_{indicator} + 0.7877*FC5_{indicator})}$	1.7573		
$a_{FI} = 2.0182 * 10^{-4} * AADT_1^{0.7492} * e^{(-0.5757*T_{indicator} + 0.6593*FC5_{indicator})}$	1.4316		
Interchange Intersection			
$a_{PD} = 3.3013 * 10^{-4} * AADT_1^{0.2240} * AADT_2^{0.7954}$	3.1278		
$a_{BC} = 1.7931 * 10^{-4} * AADT_1^{0.1416} * AADT_2^{0.7171}$	3.0270		
$a_{KA} = 1.0726 * 10^{-4} * AADT_1^{0.1416} * AADT_2^{0.7171}$	3.0270		

Where:

 a_{PD} = annual number of property-damage-only (PD) crashes

 a_{NI} = annual number of non-incapacitating or possible (NI) crashes

 a_{FI} = annual number of fatal or incapacitating (FI) crashes

 $AADT_1$ = Annual Average Daily Traffic (AADT) along the major road

 $AADT_2$ = Annual Average Daily Traffic (AADT) along the minor road

 $T_{indicator}$ = binary indicator showing the presence of a T-intersection (1 if present, 0 otherwise)

*Urban*_{indicator} = binary indicator showing the presence of a urban area (1 if present, 0 otherwise)

 $FC3_{indicator}$ = binary indicator showing the presence of a principal arterial (1 if present, 0 otherwise)

 $FC4_{indicator}$ = binary indicator showing the presence of a minor arterial (1 if present, 0 otherwise)

 $FC5_{indicator}$ = binary indicator showing the presence of a major collector (1 if present, 0 otherwise)

 $FC6_{indicator}$ = binary indicator showing the presence of a minor collector (1 if present, 0 otherwise)

 $FC34_{indicator}$ = binary indicator showing the presence of a principal arterial or a minor arterial (1 if present, 0 otherwise)

 $FC56_{indicator}$ = binary indicator showing the presence of a major collector or a minor collector (1 if present, 0 otherwise)

Table A.2 State Segments SPF

Safety Performance Function	Over-dispersion
Rural Two-Lane Segment	over dispersion
$a_{PD} = 3.0512 * 10^{-3} * AADT^{0.7088} * Length^{1.0015} * e^{0.0712*Intden}$	0.9353
$a_{NI} = 2.6988 * 10^{-5} * AADT^{0.9734} * Length^{0.9893} * e^{0.0783*Intden}$	1.2975
$a_{FI} = 1.6622 * 10^{-4} * AADT^{0.8305} * Length^{0.9638} * e^{0.0480*Intden}$	1.0271
Rural Multilane Segment	1.02/1
$a_{PD} = 3.0512 * 10^{-3} * AADT^{0.7088} * Length^{1.0015} * e^{0.0712*Intden}$	0.9353
$a_{NI} = 2.6988 * 10^{-5} * AADT^{0.9734} * Length^{0.9893} * e^{0.0783*Intden}$	1.2975
$a_{NI} = 2.0968 * 10^{-4} * AADI^{-8} * Length^{-9638} * e^{0.0481*Intden}$ $a_{FI} = 1.6622 * 10^{-4} AADT^{0.8305} * Length^{0.9638} * e^{0.0481*Intden}$	1.0271
	1.02/1
Rural Interstate Segment $a_{PD} = 3.1455 * 10^{-1} * AADT^{0.2869} * Length^{1.1279}$	0.4672
$a_{PD} = 3.1455 * 10^{-4} * AADT^{0.200} * Length^{1.127}$	0.4672
$a_{NI} = 1.1063 * 10^{-4} * AADT^{0.7746} * Length^{1.0224}$	0.4756
$a_{FI} = 3.4217 * 10^{-4} * AADT^{0.7283} * Length^{0.9005}$	0.3506
Urban Two-Lane Segment	1.2004
$a_{PD} = 2.7287 * 10^{-4} * AADT^{1.0054} * Length^{0.8660} * e^{0.0560*Intden}$	1.2984
$a_{NI} = 1.2714 * 10^{-6} * AADT^{1.3498} * Length^{0.8982} * e^{0.0567*Intden}$	1.9487
$a_{FI} = 1.1352 * 10^{-4} * AADT^{0.9099} * Length^{1.0374} * e^{0.0454*Intden}$	1.2893
Urban Multilane Segment	
$a_{PD} = 1.4748 * 10^{-4} * AADT^{1.0657} * Length^{0.9423} * e^{0.0443*Intden}$	1.3399
$a_{NI} = 5.7288 * 10^{-6} * AADT^{1.1792} * Length^{1.0151} * e^{0.0572*Intden}$	1.5400
$a_{FI} = 1.1864 * 10^{-4} * AADT^{0.8814} * Length^{1.0672} * e^{0.0554*Intden}$	1.3647
Urban Freeway Segment	
$a_{PD} = 4.8890 * 10^{-7} * AADT^{1.5733} * Length^{0.8828}$	0.3148
$a_{NI} = 6.3519 * 10^{-9} * AADT^{1.7090} * Length^{0.8907}$	0.4093
$a_{FI} = 2.6904 * 10^{-7} * AADT^{1.4256} * Length^{0.9725}$	0.2693
Rural Interchange Freeway Segment	
$a_{PD} = 9.9909 * 10^{-1} * AADT^{0.1699} * Length^{0.4908} * e^{(0.3710*DIMND+0.5954*CLOVER)}$	0.3879
$a_{NI} = 2.8675 * 10^{-4} * AADT^{0.7184} * e^{0.4660 * CLOVER}$	0.1009
$a_{FI} = 3.7730 * 10^{-1} * AADT^{0.0702} * Length^{0.5405} * e^{0.4028*CLOVER}$	0.3900
Rural Interchange Non-freeway Segment	
$a_{PD} = 9.9894 * 10^{-4} * AADT^{0.7905} * e^{(0.6510*DIMND+0.4254*CLOVER)}$	1.4245
$a_{NI} = 4.6450 * 10^{-6} * AADT^{1.1507}$	2.1941
$a_{FI} = 9.2547 * 10^{-4} * AADT^{0.5960} * e^{0.3644*DIMND}$	1.0385
Urban Interchange Freeway Segment	1.0505
$a_{PD} = 9.8544 * 10^{-5} * AADT^{1.1344} * Length^{0.8282} * e^{-0.1919*DIMND}$	0.3869
$a_{NI} = 1.2281 * 10^{-6} * AADT^{1.2585} * Length^{0.6151} * e^{0.2291*CLOVER}$	0.2701
$a_{FI} = 1.0114 * 10^{-6} * AADT^{1.3269} * Length^{0.5967} * e^{0.2022*CLOVER}$	0.2285
Urban Interchange Non-freeway Segment	0.2263
$a_{PD} = 6.6648 * 10^{-3} * AADT^{0.6108} * Length^{0.7900} * e^{(1.5238*DIMND+0.7662*CLOVER)}$	1.6494
$a_{PD} = 6.6648 * 10^{-9} * AADI^{-0.0100} * Length^{-0.0100} * e^{(1.0200) Imitol * 1.0000}$ $a_{NI} = 2.8063 * 10^{-2} * AADT^{-0.3079} * Length^{-0.5705} * e^{0.9024*DIMND}$	
$u_{NI} = 2.8003 * 10^{-2} * AADI^{-3.007} * Length^{0.007} * e^{0.0021 * DIMND}$	1.5466
$a_{FI} = 7.6871 * 10^{-3} * AADT^{0.4663} * Length^{1.0147} * e^{0.5920*DIMND}$	2.6982
Ramps (0.4199*UPRAN+0.4112*07HFP)	£ 1010
$a_{PD} = 1.7166 * 10^{-3} * AADT^{0.6550} + Length^{0.3181} * e^{(0.4199*URBAN + 0.4112*OTHER)}$	5.1818
$a_{NI} = 5.1369 * 10^{-4} * AADT^{0.5362} + Length^{0.2629} * e^{(0.3629*LOOP + 0.6036*OTHER)}$	6.2169
$a_{FI} = 4.4705 * 10^{-4} * AADT^{0.5362} + Length^{0.2629} * e^{(0.3629*LOOP+0.6036*OTHER)}$	6.2169

Where:

 a_{FI} = annual number of fatal and incapacitating (FI) crashes

 a_{NI} = annual number of non-incapacitating or possible (NI) crashes

 a_{PD} = annual number of property damage only (PD) crashes

AADT = Annual Average Daily Traffic (AADT) along the segment

Length = Length of the segment in mile

Intden = no of minor intersection/segment length in mile

CLOVER = indicator variable for cloverleaf interchange (1 if present, 0 otherwise)

DIMND = indicator variable for diamond interchange (1 if present, 0 otherwise)

DIRECT = indicator variable for directional interchange (1 if present, 0 otherwise)

JUG = indicator variable for jug-handle interchange (1 if present, 0 otherwise)

TRUMPO = indicator variable for trumpet and other interchange (1 if present, 0 otherwise)

Diag = diagonal ramp

OTHER = other ramp (1 if other ramp type, 0 otherwise)

LOOP = loop ramp (1 if a loop ramp, 0 otherwise)

URBAN = urban indicator (1 if urban area, 0 otherwise).

APPENDIX B. REVISED CRASH COSTS

The average costs of crashes were estimated by calculating the individual crash cost considering the number of people killed/injured and the number of vehicles damaged. The averages of these costs then were obtained for the different types of segments/intersections/ramps.

The average cost of one fatality (K) is \$10,562,000 and one incapacitating injury (A) is \$1,155,000; the cost for a non-incapacitating (B) injury is considered as \$318,000 and the cost of a possible injury (C) is considered as \$147,000. On the other hand, for property damage only crashes (O), the average cost of a no injury is \$11,900 and the cost per vehicle is \$4,400 (source: National Safety Council, 2017, https://injuryfacts.nsc.org/all-injuries/costs/guide-to-calculating-costs/data-details/

The cost of a crash was calculated in the following way:

1. Calculate the cost of each crash

 $C = \$4,400 \cdot DV + CO \cdot \$11,900 + \$147,000 \cdot CP + \$318,000 \cdot BP + \$1,155,000 \cdot AP + \$10,562,000 \cdot KP$

where:

 $C = \operatorname{crash} \operatorname{cost} (\$),$

KP = number of fatalities (persons),

AP = number of incapacitating injuries (persons),

BP = number non-incapacitating injuries (persons),

CP = number of possible injuries (person),

CO = number of no injuries (person),

DV = number of damaged vehicles.

2. Group crashes by road type and crash severity (FI, NI, PD)

3. Calculate the average cost of crash in each group gr

$$C_{gr} = \frac{\sum_{i \in I_{gr}} C_i}{N_{gr}}$$

where:

 C_{qr} = average cost of crash in crash group gr,

 I_{qr} = indices of crashes that belong to crash group gr,

 $C_i = \text{cost of crash } i \text{ calculated in step 1},$

 N_{qr} = number of crashes in group gr.

Table B.1 Average Crash Costs for Segments

	To	Total Number			t of Crashes	s (\$1000)	Average Crash Cost (\$1000)			
Road Type	FI Crashes	NI Crashes	PD Crashes	FI Crashes	NI Crashes	PD Crashes	FI Crashes	NI Crashes	PD Crashes	
Rural two-lane	3,472	2,018	24,137	8,323,525	709,064	672,589	2,397.3	351.4	27.9	
Rural multilane	991	576	6,307	2,416,771	212,128	203,187	2,438.7	368.3	32.2	
Rural interstate	1,190	596	10,885	2,774,074	197,299	343,561	2,331.2	331.0	31.6	
Urban multilane	2,600	2,535	21,442	5,029,936	937,706	818,612	1,934.6	369.9	38.2	
Urban two-lane	431	321	2,924	838,096	123,284	108,783	1,944.5	384.1	37.2	
Urban freeway	667	372	6,271	1,260,023	122,819	224,268	1,889.1	330.2	35.8	
Rural interchange freeway	262	144	2550	503,542	50,343	83,471	1,921.9	349.6	32.7	
Rural interchange non-freeway	151	210	1634	311,239	82,983	58,862	2,061.2	395.2	36.0	
Urban interchange freeway	1597	908	15896	2,925,187	295,615	595,634	1,831.7	325.6	37.5	
Urban interchange non-freeway	217	236	2051	411,875	88,705	79,151	1,898.0	375.9	38.6	
Ramps	322	370	4072	589,253	134,208	149,975	1,830.0	362.7	36.8	
Rural Local Segments	1,871	1,273	18,673	3,806,561	409,326	493,949	2,034.5	321.5	26.5	
Urban Local Segments	7,321	12,577	130,703	13,251,972	4,597,376	4,203,691	1,810.1	365.5	32.2	

Note: The average crash costs increased considerably in 2016 when the comprehensive costs replaced the economic loss used in the previous years. The comprehensive unit costs are updated by NHTSA on regular basis and they tend to grow at rather high rate. Another source of the average crash costs increase was the 2016 modification of the Incapacitating Injury criterion. This effect was limited.

Table B.2 Average Crash Costs for Intersections

	Total Number			Total Co	st of Crashe	s (\$1000)	Average Crash Cost (\$1000)		
Element Type	FI Crashes	NI Crashes	PD Crashes	FI Crashes	NI Crashes	PD Crashes	FI Crashes	NI Crashes	PD Crashes
Unsignalized Rural State-State	406	222	2,212	986,207	83,240	78,847	2,429.1	375.0	35.6
Signalized Rural State-State	160	113	1,016	386,617	41,875	39,300	2,416.4	370.6	38.7
Unsignalized Rural State-Local	3,173	1,857	18,419	7,391,022	725,030	577,816	2,329.3	390.4	31.4
Signalized Rural State-Local	396	389	3,277	842,940	170,139	131,224	2,128.6	437.4	40.0
Unsignalized Urban State-State	146	136	1,616	247,395	47,557	62,588	1,694.5	349.7	38.7
Signalized Urban State-State	438	510	4,730	809,973	188,501	193,684	1,849.3	369.6	40.9
Unsignalized Urban State-Local	2,903	2,856	24,642	5,644,291	1,044,027	950,486	1,944.3	365.6	38.6
Signalized Urban State-Local	2,342	3,336	24,750	4,150,564	1,251,049	1,020,012	1,772.2	375.0	41.2
Interchange Intersections	198	331	2,411	366,713	136,253	91,769	1,852.1	411.6	38.1
Urban Local Intersections	1,130	1,058	8,142	2,314,585	419,738	301,830	2,048.3	396.7	37.1
Rural Local Intersections	5,808	13,261	74,204	10,442,018	5,144,184	2,918,995	1,797.9	387.9	39.3

Note: The average crash costs increased considerably in 2016 when the comprehensive costs replaced the economic loss used in the previous years. The comprehensive unit costs are updated by NHTSA on regular basis and they tend to grow at rather high rate. Another source of the average crash costs increase was the 2016 modification of the Incapacitating Injury criterion. This effect was limited.

APPENDIX C. UPDATED CRASH MODIFICATION FACTORS

The following table presents the CRFs/CMFs for safety countermeasures that were identified as being the most suitable for Indiana based on the criteria presented in the Joint Transportation Research Program technical report, "Updating the Crash Modification Factors and Calibrating the IHSDM for Indiana" (Tarko et al., 2018). The table contains 82 safety countermeasures spanning 16 different categories. For each countermeasure, the applicable areas type (urban and/or rural), facility type, and CRF/CMF values for various crash types and severities are presented. Finally, the state(s) where each study was conducted and the corresponding reference are provided in the table.

Table C.1 Crash Modification Factors

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
Access	Install two-way left-turn	Rural	Two-lane	Total	36.0	0.640	AR, CA, IL, NC (29)
Management	lane (TWLTL)		highways	Fatal/Injury	34.8	0.652	
				Rear-end	46.8	0.532	
Access	Replace TWLTL with	Urban	Principal	Total	23	0.77	NV (24)
Management	raised median		arterials; minor	PDO	33	0.67	
			arterials;	Fatal/Injury	21	0.79	
			collectors	Rear-end	19	0.81	
				Sideswipe	21	0.79	
				Angle	36	0.64	
				Head-on	47	0.53	
Access	Reduce driveway density	Rural	Two-lane	Total	2.3	0.977	TX (11)
Management	by 1 driveway per mile ¹		highways				
			Four-lane	Total	0.4	0.996	
			highways				
Access	Reduce driveway density	Rural	Two-lane	Total	4.5	0.955	TX (11)
Management	by 2 driveways per mile ¹		highways				
			Four-lane	Total	0.7	0.993	
			highways				
Access	Reduce driveway density	Rural	Two-lane	Total	6.7	0.933	TX (11)
Management	by 3 driveways per mile ¹		highways				
			Four-lane	Total	1.1	0.989	
			highways				

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
Access	Reduce driveway density	Urban	Principal	Total	4.7	0.953	NV (24)
Management	by 5 driveways per mile ¹		arterials, minor	PDO	3.5	0.965	
			arterials, or	Fatal/Injury	2.9	0.971	
			collectors with	Rear-end	1.5	0.985	
			raised medians	Angle	4.3	0.957	
			Principal	Total	4.4	0.956	
			arterials, minor	PDO	4.6	0.954	
			arterials, or	Fatal/Injury	1.3	0.987	
			collectors with	Rear-end	3.8	0.962	
			TWLTLs	Angle	4.1	0.959	
Access	Reduce driveway density	Urban	Principal	Total	9.2	0.908	NV (24)
Management	by 10 driveways per mile ¹		arterials, minor	PDO	6.9	0.931	
			arterials, or	Fatal/Injury	5.7	0.943	
			collectors with	Rear-end	3.0	0.970	
			raised medians	Angle	8.3	0.917	
			Principal	Total	8.6	0.914	
			arterials, minor	PDO	9.0	0.910	
			arterials, or	Fatal/Injury	2.6	0.974	
			collectors with	Rear-end	7.4	0.926	
			TWLTLs	Angle	8.1	0.919	
Access	Reduce driveway density	Urban	Principal	Total	13.4	0.866	NV (24)
Management	by 15 driveways per mile ¹		arterials, minor	PDO	10.1	0.899	
			arterials, or	Fatal/Injury	8.5	0.915	
			collectors with	Rear-end	4.4	0.956	
			raised medians	Angle	12.2	0.878	
			Principal	Total	12.6	0.874	
			arterials, minor	PDO	13.2	0.868	
			arterials, or	Fatal/Injury	3.8	0.962	
			collectors with	Rear-end	10.9	0.891	
			TWLTLs	Angle	11.8	0.882	
Access	Reduce driveway density	Urban	Principal	Total	17.5	0.825	NV (24)
Management	by 20 driveways per mile ¹		arterials, minor	PDO	13.2	0.868	` ′
_			arterials, or	Fatal/Injury	11.1	0.889	
			collectors with	Rear-end	5.8	0.942	
			raised medians	Angle	16.0	0.840	
			Principal	Total	16.5	0.835	
			arterials, minor	PDO	17.1	0.829	

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
			arterials, or	Fatal/Injury	5.1	0.949	
			collectors with	Rear-end	14.3	0.857	
			TWLTLs	Angle	15.5	0.845	
Alignment	Flatten crest of curve	Rural	Arterials,	Total	19.6	0.804	OH (19)
			collectors	Fatal/Injury	51.2	0.488	
Alignment	Reduce the average grade	Rural	Two-lane roads	PDO	2.0	0.980	IN (42)
	rate by 1% ¹			Fatal/Injury	1.9	0.981	
Alignment	Reduce the average grade	Rural	Two-lane roads	PDO	4.0	0.960	IN (42)
	rate by 2% ¹			Fatal/Injury	3.8	0.962	
Alignment	Reduce the average grade	Rural	Two-lane roads	PDO	6.0	0.940	IN (42)
_	rate by 3% ¹			Fatal/Injury	5.7	0.943	
Alignment	Reduce the average grade	Rural	Two-lane roads	PDO	7.9	0.921	IN (42)
_	rate by 4% ¹			Fatal/Injury	7.5	0.925	
Alignment	Reduce the average grade	Rural	Two-lane roads	PDO	9.7	0.903	IN (42)
J	rate by 5% ¹			Fatal/Injury	9.3	0.907	, ,
Alignment	Reduce the average	Rural	Two-lane roads	PDO	1.9	0.981	IN (42)
3	degree of curve by 1 degree ¹			Fatal/Injury	2.9	0.971	,
Alignment	Reduce the average	Rural	Two-lane roads	PDO	3.8	0.962	IN (42)
8	degree of curve by 2 degrees ¹			Fatal/Injury	5.7	0.943	
Alignment	Reduce the average	Rural	Two-lane roads	PDO	5.7	0.943	IN (42)
3	degree of curve by 3 degrees ¹			Fatal/Injury	8.4	0.916	
Alignment	Reduce the average	Rural	Two-lane roads	PDO	7.5	0.925	IN (42)
S	degree of curve by 4 degrees ¹			Fatal/Injury	11.1	0.889	, ,
Alignment	Reduce the average	Rural	Two-lane roads	PDO	9.3	0.907	IN (42)
S	degree of curve by 5 degrees ¹			Fatal/Injury	13.6	0.864	, ,
Highway	Install lighting on a	Urban and	Not specified	Nighttime	20.0	0.80	Not specified (17)
Lighting	roadway segment	rural		Nighttime Fatal/Injury	29.0	0.71	• , ,
Highway	Install lighting at a	Urban	Not specified	Daytime	-3.0	1.03	MN (6)
Lighting	signalized intersection		1	Nighttime	3.0	0.97	· /
0 0		Rural	Not specified	Daytime	2.0	0.98	
	•				_		
				Nighttime	2.0	0.98	

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
Highway	Install lighting at a stop-			Nighttime	9.0	0.91	
Lighting	controlled intersection	Rural	Not specified	Daytime	-9.0	1.09	
				Nighttime	-7.0	1.07	
Highway	Install lighting at an	Urban and	Arterials,	Total	50.4	0.496	OH (19)
Lighting	interchange	rural	collectors	Fatal/Injury	26.0	0.74	
Intersection Geometry	Add a left-turn lane on one major approach to a	Urban	Three-leg intersections	Total	7.0	0.930	IA, IL, LA, MN, NE, NC, OR, VA (18)
	signalized intersection		Four-leg intersections	Total	10.0	0.900	
		Rural	Three-leg intersections	Total	15.0	0.850	
			Four-leg intersections	Total	18.0	0.820	
Intersection Geometry	Add a left-turn lane on one major approach to an	Urban	Three-leg intersections	Total	33.0	0.670	IA, IL, LA, MN, NE, NC, OR, VA (18)
•	unsignalized intersection		Four-leg intersections	Total	27.0	0.730	` ,
		Rural	Three-leg intersections	Total	44.0	0.560	
			Four-leg intersections	Total	28.0	0.720	
Intersection Geometry	Add a right-turn lane on one major approach to a signalized intersection	Urban	Four-leg intersections	Total	4.0	0.960	IA, IL, LA, MN, NE, NC, OR, VA (18)
Intersection Geometry	Add a right-turn lane on one major approach to an unsignalized intersection	Rural	Four-leg intersections	Total	14.0	0.860	IA, IL, LA, MN, NE, NC, OR, VA (18)
Intersection	Convert diamond	Urban	Principal	Total	33	0.67	KY, MO, NY, TN (20)
Geometry	interchange to diverging		arterial, other	Injury	41	0.59	
	diamond interchange		freeways and	Angle	67	0.33	
	(DDI)		expressways	Rear-end	36	0.64	
				Sideswipe	-27	1.27	
				Single-vehicle	24	0.76	
Intersection	Convert intersection on	Urban and	Intersections	Total	-9.9	1.099	WI (31)
Geometry	low-speed road to a roundabout	rural	where all approaches are low-speed (less than 45 mph)	Fatal/Injury	52.7	0.473	

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
Intersection	Convert intersection on	Urban and	Intersections	Total	34.1	0.659	WI (31)
Geometry	high-speed road to a roundabout	rural	where at least one approach is high-speed (45 mph or greater)	Fatal/Injury	49.4	0.506	
Intersection	Convert intersection to a	Urban and	Intersections	Total	36.0	0.640	WI (31)
Geometry	single-lane roundabout	rural	with low- and high-speed approaches	Fatal/Injury	18.2	0.818	
Intersection	Convert intersection to a	Urban and	Intersections	Total	-6.2	1.062	WI (31)
Geometry	multilane roundabout	rural	with low- and high-speed approaches	Fatal/Injury	63.3	0.367	
Intersection	Convert two-way stop-	Urban	Intersections on	Total	27.0	0.73	CA, CO, CT, FL, KS, MD, ME, MI,
Geometry	controlled intersection to a roundabout		two- or four- lane roads	Fatal/Injury	58.1	0.419	MO, MS, NV, OR, SC, UT, VT, WA WI (31, 33)
		Rural	Intersections on	Total	48.2	0.518	
			two- or four- lane roads	Fatal/Injury	61.2	0.388	
Intersection	Convert all-way stop-	Urban and	Intersections on	Total	-7.4	1.074	CA, CO, CT, FL, KS, MD, ME, MI,
Geometry	controlled intersection to a roundabout	rural	two- or four- lane roads	Fatal/Injury	8.7	0.913	MO, MS, NV, OR, SC, UT, VT, WA WI (31, 33)
Intersection	Convert signalized	Urban	Intersections on	Total	12.4	0.876	CA, CO, CT, FL, IN, KS, MD, ME,
Geometry	intersection to a roundabout		two- or four- lane roads	Fatal/Injury	66.1	0.339	MI, MO, MS, NC, NV, NY, OR, SC, UT, VT, WA, WI (15, 31, 33)
		Rural	Intersections on	Total	26.2	0.738	
			two- or four- lane roads	Fatal/Injury	71.5	0.285	
Intersection	Convert a non-controlled	Urban and	Intersections on	Total	-24.2	1.242	WI (31)
Geometry	or yield-controlled intersection to a roundabout	rural	two- or four- lane roads	Fatal/Injury	100.0	0	
Intersection	Convert two-way stop-	Rural	Intersections of	Total	34.8	0.652	MO (8)
Geometry	controlled intersection to J-turn intersection		four-lane divided, high- speed roads and minor roads	Fatal/Injury	53.7	0.463	
Intersection		Urban and	Four-leg	Total	33.8	0.662	WI (30)
Geometry		rural	intersections	Fatal/Injury	35.6	0.644	` ′

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
	Improve left-turn lane			Left-turn	38.0	0.62	
	offset to create positive			Rear-end	31.7	0.683	
	offset						
Intersection	Improve intersection sight	Urban and	Not specified	Total	33.0	0.67	Based on AK, AZ, CA, IA, KY, MO
Geometry	distance	rural					(13)
				Right-angle	21.0	0.79	Based on AZ, MO, MN (13)
				Left-turn	13.0	0.87	Based on AZ, MO (13)
				Sideswipe	43.0	0.57	Based on AK, MO (13)
Intersection	Change left-turn phasing	Urban	Four-leg	Total	-8.1	1.081	NC, Toronto (39)
Traffic	on one approach from		intersections	Fatal/Injury	0.5	0.995	
Control	permitted to			Left-turn	7.5	0.925	
	protected/permitted phasing			Rear-end	-9.4	1.094	
Intersection	Change left-turn phasing	Urban	Four-leg	Total	4.2	0.958	NC, Toronto (39)
Traffic	on more than one		intersections	Fatal/Injury	8.6	0.914	
Control	approach from permitted			Left-turn	21.3	0.787	
	to protected/permitted phasing			Rear-end	-5.0	1.050	
Intersection	Change left-turn phasing	Urban	Signalized	Total	1	0.99	NC (17)
Traffic	from permitted or		intersections	Left-turn	99	0.01	, ,
Control	permitted/protected to protected-only phasing						
Intersection	Supplement left-turn	Urban	Four-leg	Total	24.7	0.753	NC, OR, WA (39)
Traffic	phasing from at least one		intersections	Left-turn	36.5	0.635	
Control	permitted approach with flashing yellow arrow						
Intersection	Change left-turn phasing	Urban	Four-leg	Total	7.8	0.922	NC, OR, WA (39)
Traffic	from protected/permitted		intersections	Left-turn	19.4	0.806	
Control	to flashing yellow arrow						
Intersection	Change left-turn phasing	Urban	Four-leg	Total	-33.8	1.338	NC, OR, WA (39)
Traffic	from protected to flashing		intersections	Left-turn	-124.2	2.242	
Control	yellow arrow						
Intersection	Convert two-way stop	Urban and	Four-leg	Total	68	0.32	NC (34)
Traffic	control to all-way stop	rural	intersections	Fatal/Injury	77	0.23	
Control	control			Frontal impact	75	0.25	
				Ran stop sign	15	0.85	
	Improve signal visibility	Urban		Daytime PDO	9.9	0.901	British Columbia (9)

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
Intersection			Four-leg	Daytime	-0.4	1.004	, , ,
Traffic			intersections on	Fatal/Injury			
Control			three- to four-	Nighttime PDO	13.3	0.867	
			lane roads	Nighttime	9.8	0.902	
				Fatal/Injury			
Intersection	Increase yellow change	Urban	Three- and	Total	-14.1	1.141	CA, MD (39)
Traffic	interval (1.0 seconds)		four-leg	Fatal/Injury	-7.3	1.073	
Control			intersections	Rear-end	6.6	0.934	
				Angle	-7.6	1.076	
Intersection	Increase all-red clearance	Urban	Three- and	Total	20.2	0.798	CA, MD (39)
Traffic	interval (average of 1.1		four-leg	Fatal/Injury	13.7	0.863	
Control	seconds)		intersections	Rear-end	19.6	0.804	
				Angle	3.4	0.966	
Intersection	Increase yellow interval	Urban	Three- and	Total	1.0	0.990	CA, MD (39)
Traffic	(average of 0.8 seconds)		four-leg	Fatal/Injury	-2.0	1.020	
Control	and add all-red interval		intersections	Rear-end	-11.7	1.117	
	(average of 1.2 seconds)			Angle	3.9	0.961	
Intersection	Install transverse rumble	Rural	Three-leg	Total	-22.3	1.223	IA, MN (38)
Traffic	strips on approaches to		intersections on	PDO	-28.4	1.284	
Control	stop-controlled		major collectors	Fatal/Incap. Inj.	59	0.41	
	intersection		Four-leg	Total	-6.6	1.066	
			intersections on	PDO	-13.8	1.138	
			major collectors	Fatal/Incap. Inj.	34.8	0.652	
Intersection	Install new traffic signal	Urban	Three-leg	Fatal/Injury	14	0.86	CA, FL, MD, VA, WI, Toronto (25)
Traffic	at previously stop-		intersections	Right-angle	34	0.66	
Control	controlled intersection			Fatal/Injury			
				Rear-end	-50	1.5	
				Fatal/Injury			
			Four-leg	Fatal/Injury	23	0.77	
			intersections	Right-angle	67	0.33	
				Fatal/Injury			
				Rear-end	-38	1.38	
				Fatal/Injury			
		Rural	Three- and	Total	44	0.56	CA, MN (17)
			four-leg intersections	Right-angle	77	0.23]
			Intersections	Rear-end	-58	1.58	
				Left-turn	60	0.40	

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
Intersection	Replace standard stop	Urban and	Two-lane	Right-angle	41.5	0.585	MN (7)
Traffic	sign with flashing LED	rural	highways				
Control	stop sign				_		
Intersection	Retime signal change	Urban	Four-leg	Total	8	0.92	NY (32)
Traffic	intervals to Institute of		intersections	Fatal/Injury	12	0.88	
Control	Transportation Engineers			Rear-end	-12	1.12	
	(ITE) standards			Rear-end	-8	1.08	
				Fatal/Injury	4	0.06	
				Angle	4	0.96	
				Angle	-6	1.06	
				Fatal/Injury	2.5	0.62	
				Vehicle/bicycle	37	0.63	
				and vehicle/pedestri			
				-			
				an Vehicle/bicycle	37	0.63	
				and	37	0.03	
				vehicle/pedestri			
				an Fatal/Injury			
Intersection	Install lighting	Urban and	Four-leg	Total	10	0.90	IN (48)
Lighting		rural	intersections				
			Three-leg	Total	16	0.84	
			interactions				
ITS And	Install actuated advance	Urban and	Four-lane high-	Total	8.2	0.918	NE (2)
Advanced	intersection warning	rural	speed divided	Fatal/Injury	11.3	0.887	
Technology	system at high-speed		highways	Rear-end	1.2	0.988	
	intersection		(major road)	Right-angle	43.6	0.564	
ITS And	Install changeable	Rural	Two-lane	Total	5.0	0.95	AZ, FL, IA, OH, OR, TX, WA (16)
Advanced	horizontal curve speed		highways				
Technology	warning signs						
ITS And	Install variable speed	Urban	Principal	Total	8.0	0.92	MO (5)
Advanced	limit signs		arterial				
Technology	1		interstates			0.10	27.0 (0.5)
ITS And	Install "Vehicle Entering	Urban and	Highways with	Total	32	0.68	NC (35)
Advanced	When Flashing" (VEWF)	rural	35-55 mph	Fatal/Injury	27	0.73	
Technology	system with advance post		mainline	Target (angle,	32	0.68	
	mounted signs on major		approach	head-on, left-			
			speeds				

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
-	approach and loops on			turn, and right-			
	minor approach			turn)			
Pavement	Improve pavement	Rural	Two-lane	Total	-3.0	1.03	VA (46)
	condition from poor		highways	Fatal/Injury	26.0	0.74	
	(critical condition index						
	below 60) to good						
	(critical condition index						
	above 70)						
Pedestrians	Construct pedestrian	Urban	Not specified	Pedestrian	86	0.14	Based on AK, AZ, KY, MO (13)
	bridge or tunnel						
Pedestrians	Install High intensity	Urban	Crossings of	Total	29	0.71	AZ (12)
	Activated crossWalK		four- to six-lane	Fatal/Incap. Inj.	15	0.85	
	(HAWK) at intersection		roads	Pedestrian	69	0.31	
Pedestrians	Install sidewalk	Urban	Not specified	Pedestrian	74	0.26	Based on AK, AZ, KY, MO, OK (13)
Railroads	Build grade-separated	Urban and	Not specified	Total	39	0.61	Based on IA (13)
	crossing	rural					
Railroads	Eliminate railroad	Urban and	Not specified	Total	75	0.25	Based on IA (13)
	crossing	rural					
Railroads	Install gates at crossings	Urban and	Arterials,	Total	93	0.07	Canada (26)
	with signs	rural	collectors, local				
			roads				
Railroads	Upgrade signs to flashing	Urban and	Arterials,	Total	77	0.23	Canada (26)
	lights	rural	collectors, local				
			roads				
Roadside	Increase median width	Rural	Four-lane	Multiple	9	0.91	CA, KY, MN (40)
	from 10 feet to 20 feet		divided	vehicle			
			highways				
Roadside	Increase median width	Rural	Four-lane	Multiple	17	0.83	CA, KY, MN (40)
	from 10 feet to 30 feet		divided	vehicle			
			highways				
Roadside	Increase median width	Rural	Four-lane	Multiple	25	0.75	CA, KY, MN (40)
	from 10 feet to 40 feet		divided	vehicle			
			highways				
Roadside	Increase median width	Rural	Four-lane	Multiple	32	0.68	CA, KY, MN (40)
	from 10 feet to 50 feet		divided	vehicle			
			highways				

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
Roadside	Increase median width from 10 feet to 60 feet	Rural	Four-lane divided highways	Multiple vehicle	38	0.62	CA, KY, MN (40)
Roadside	Increase median width from 10 feet to 70 feet	Rural	Four-lane divided highways	Multiple vehicle	43	0.57	CA, KY, MN (40)
Roadside	Increase median width from 10 feet to 80 feet	Rural	Four-lane divided highways	Multiple vehicle	49	0.51	CA, KY, MN (40)
Roadside	Install guardrail	Urban and	Not specified	Total	11	0.890	Based on AZ, IA, IN, KY, MO (13)
		rural		Non-incapac. /Possible	40	0.600	
				Incap./Fatal	65	0.350	
				Run-off-the- road	30	0.700	
Roadside	Install cable median barrier (high-tensioned) on depressed median of 50 feet wide or wider	Rural	Principal arterial interstates	Multiple- vehicle, opposite direction (cross median, frontal and opposing direction sideswipe, head-on)	96	0.04	IN (45)
				Single-vehicle crashes (fixed object, run-off- the-road)	-72	1.72	
Roadside	Install concrete median	Rural	Interstates	Single-vehicle	-120	2.2	CO, IL, IN, MO, NY, OH, OR, WA
	barrier			Multiple- vehicle, same direction	20	0.8	(41)
				Multiple- vehicle opposite direction	100	0	
Roadside	Change in sideslope from	Rural	Not specified	PDO	29	0.71	Not specified (10)
	1V:3H to 1V:4H			Fatal/Injury	42	0.58	
Roadside		Rural	Not specified	PDO	24	0.76	Not specified (10)

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
•	Change in sideslope from 1V:4H to 1V:6H			Fatal/Injury	22	0.78	
Roadside	Remove or relocate fixed objects outside of clear zone	Urban and rural	Arterials, collectors	Total Fatal/Injury	38.2	0.618	OH (19)
Road Diet	Re-stripe four-lane undivided road to three- lane (with TWLTL)	Urban	Minor arterials	Total	29	0.71	CA, IA, WA (17)
Roadway	Add no passing striping	Rural	Not specified	Total	53	0.47	Based on MT (13)
Delineation				Head-on	40	0.60	Based on KY, MO (13)
				Sideswipe	40	0.60	
Roadway Delineation	•	Urban	Two-lane roads	Target (head- on, opposite- direction sideswipe)	40	0.60	CA, CO, DE, MD, MN, OR, PA, WA (43)
				Target Fatal/Injury	64	0.36	
		Rural	Two-lane roads	Total	9	0.91	
				Fatal/Injury	12	0.88	
				Target	30	0.70	
				Target Fatal/Injury	44	0.56	
Roadway Delineation	Install shoulder rumble strips	Rural	Two-lane roads	Run-off-the- road	15	0.85	MN, MO, PA (43)
				Run-off-the- road Fatal/Injury	29	0.71	
			Freeways	Run-off-the- road	11	0.89	
				Run-off-the- road Fatal/Injury	16	0.84	
Roadway	Install centerline plus	Rural	Two-lane roads	Total	18.6	0.814	KY, MI, MO, PA (21, 23)
Delineation	shoulder rumble strips			Fatal/Injury	22.9	0.771	
				Head-on	36.8	0.632	
				Run-off-the-	25.8	0.742	
				road	1		

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
				Opposite- direction sideswipe	23.3	0.767	
Roadway Delineation	Install edgeline pavement markings on curves	Rural	Two-lane highways	Total Run-off-the- road	25.9 11.0	0.741 0.89	TX (44)
				Speed-related (nighttime)	3.7	0.963	
Roadway Delineation	Install edgeline pavement markings on tangent sections	Rural	Two-lane highways	Total Run-off-the- road	6.1	0.939 0.866	TX (44)
				Speed-related (nighttime)	3.4	0.966	
Roadway Delineation	Install raised pavement markers	Rural	Two-lane highways with AADT 0-5000, curve radius R => 1640 ft	Nighttime	-16	1.16	IL, NJ, NY, PA (4)
			Two-lane highways with AADT 5001- 15000, curve radius R => 1640 ft	Nighttime	1	0.99	
			Two-lane highways with AADT 15001- 20000, curve radius R => 1640 ft	Nighttime	24	0.76	
			Two-lane highways with AADT 0-5000, curve radius R < 1640 ft	Nighttime	-43	1.43	
			Two-lane highways with AADT 5001-	Nighttime	-26	1.26	

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
		•	15000, curve radius R < 1640 ft				
			Two-lane highways with AADT 15001- 20000, curve radius R < 1640 ft	Nighttime	-3	1.03	
			Four-lane freeways with AADT <= 20000	Nighttime	-13	1.13	MO, NY, PA, WI (4)
			Four-lane freeways with AADT 20001- 60000	Nighttime	6	0.94	
			Four-lane freeways with AADT > 60000	Nighttime	33	0.67	
Segments	Increase in number of through lanes by 1 lane ¹	Urban	Multilane	PDO Fatal/Injury	61.3	0.387 0.335	IN (42)
Segments	Convert two-lane roadway to four-lane divided roadway	Urban	Before: Two- lane roadway After: Four-lane divided roadway	Total PDO Fatal/Injury	65.9 64.9 63.3	0.341 0.351 0.367	FL (1)
		Rural	Before: Two- lane roadway After: Four-lane divided roadway	Total PDO Fatal/Injury	28.8 30.9 45.1	0.712 0.691 0.549	
Segments	Convert 12 foot lanes and 6 foot shoulders to 11 foot lanes and 7 foot shoulders	Rural	Two-lane highways	Run-off-the- road, head-on, sideswipe	10	0.90	PA (14)
Segments	Convert 12 foot lanes and 6 foot shoulders to 10 foot lanes and 8 foot shoulders	Rural	Two-lane highways	Run-off-the- road, head-on, sideswipe	62	0.38	PA (14)

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
Segments	Convert 12 foot lanes and	Rural	Two-lane	Run-off-the-	13	0.87	PA (14)
	6 foot shoulders to 12 foot		highways	road, head-on,			
	lanes and 5 foot shoulders			sideswipe			
Segments	Convert 12 foot lanes and	Rural	Two-lane	Run-off-the-	16	0.84	PA (14)
	6 foot shoulders to 11 foot		highways	road, head-on,			
	lanes and 6 foot shoulders			sideswipe			
Segments	Convert 12 foot lanes and	Rural	Two-lane	Run-off-the-	-96	1.96	PA (14)
O	6 foot shoulders to 10 foot		highways	road, head-on,			` '
	lanes and 7 foot shoulders			sideswipe			
Segments	Convert 12 foot lanes and	Rural	Two-lane	Run-off-the-	-4	1.04	PA (14)
8	6 foot shoulders to 12 foot		highways	road, head-on,			,
	lanes and 4 foot shoulders			sideswipe			
Segments	Convert 12 foot lanes and	Rural	Two-lane	Run-off-the-	-6	1.06	PA (14)
	6 foot shoulders to 11 foot		highways	road, head-on,			,
	lanes and 5 foot shoulders		8 3	sideswipe			
Segments	Convert 12 foot lanes and	Rural	Two-lane	Run-off-the-	25	0.75	PA (14)
~ · g · - · · ·	6 foot shoulders to 10 foot		highways	road, head-on,			(- 1)
	lanes and 6 foot shoulders		8	sideswipe			
Segments	Convert 12 foot lanes and	Rural	Two-lane	Run-off-the-	-11	1.11	PA (14)
	6 foot shoulders to 12 foot		highways	road, head-on,			(- 1)
	lanes and 3 foot shoulders		8	sideswipe			
Segments	Convert 12 foot lanes and	Rural	Two-lane	Run-off-the-	-14	1.14	PA (14)
	6 foot shoulders to 11 foot		highways	road, head-on,			()
	lanes and 4 foot shoulders		8 3	sideswipe			
Segments	Convert 12 foot lanes and	Rural	Two-lane	Run-off-the-	-22	1.22	PA (14)
	6 foot shoulders to 10 foot		highways	road, head-on,			()
	lanes and 5 foot shoulders		8	sideswipe			
Segments	Convert 12 foot lanes and	Rural	Two-lane	Run-off-the-	-16	1.16	PA (14)
9	6 foot shoulders to 12 foot		highways	road, head-on,			· /
	lanes and 2 foot shoulders		8 3	sideswipe			
Segments	Convert 12 foot lanes and	Rural	Two-lane	Run-off-the-	-19	1.19	PA (14)
	6 foot shoulders to 11 foot		highways	road, head-on,			()
	lanes and 3 foot shoulders		8 3	sideswipe			
Segments	Convert 12 foot lanes and	Rural	Two-lane	Run-off-the-	-20	1.20	PA (14)
	6 foot shoulders to 10 foot		highways	road, head-on,			()
	lanes and 4 foot shoulders			sideswipe			
Segments	Convert 12 foot lanes and	Rural	Two-lane	Run-off-the-	-85	1.85	PA (14)
~ -8	6 foot shoulders to 12 foot		highways	road, head-on,		1.00	()
	lanes and 1 foot shoulders			sideswipe			

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
Segments	Convert 12 foot lanes and 6 foot shoulders to 11 foot lanes and 2 foot shoulders	Rural	Two-lane highways	Run-off-the- road, head-on, sideswipe	-12	1.12	PA (14)
Segments	Convert 12 foot lanes and 6 foot shoulders to 10 foot lanes and 3 foot shoulders	Rural	Two-lane highways	Run-off-the- road, head-on, sideswipe	-13	1.13	PA (14)
Segments	Convert 12 foot lanes and 6 foot shoulders to 12 foot lanes and 0 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-42.7	1.427	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 12 foot lanes and 1 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-34.5	1.345	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 12 foot lanes and 2 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-26.7	1.267	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 12 foot lanes and 3 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-19.4	1.194	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 12 foot lanes and 4 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-12.6	1.126	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 12 foot lanes and 5 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-6.1	1.061	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 12 foot lanes and 7 foot shoulders ¹	Urban	Urban and suburban arterials	Total	5.8	0.942	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 12 foot lanes and 8 foot shoulders ¹	Urban	Urban and suburban arterials	Total	11.2	0.888	IL (22)

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
Segments	Convert 12 foot lanes and 6 foot shoulders to 12 foot lanes and 9 foot shoulders ¹	Urban	Urban and suburban arterials	Total	16.3	0.837	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 12 foot lanes and 10 foot shoulders ¹	Urban	Urban and suburban arterials	Total	21.1	0.789	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 10 foot lanes and 0 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-270.5	3.705	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 10 foot lanes and 1 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-248.4	3.484	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 10 foot lanes and 2 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-227.6	3.276	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 10 foot lanes and 3 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-208	3.08	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 10 foot lanes and 4 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-189.6	2.896	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 10 foot lanes and 5 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-172.3	2.723	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 10 foot lanes and 6 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-156	2.56	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 10 foot	Urban	Urban and suburban arterials	Total	-140.7	2.407	IL (22)

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
	lanes and 7 foot shoulders ¹						
Segments	Convert 12 foot lanes and 6 foot shoulders to 10 foot lanes and 8 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-126.3	2.263	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 10 foot lanes and 9 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-112.8	2.128	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 10 foot lanes and 10 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-100.1	2.001	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 11 foot lanes and 0 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-14.2	1.142	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 11 foot lanes and 1 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-10.4	1.104	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 11 foot lanes and 2 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-6.8	1.068	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 11 foot lanes and 3 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-3.3	1.033	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 11 foot lanes and 4 foot shoulders ¹	Urban	Urban and suburban arterials	Total	0.1	0.999	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 11 foot lanes and 5 foot shoulders ¹	Urban	Urban and suburban arterials	Total	3.4	0.966	IL (22)

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
Segments	Convert 12 foot lanes and 6 foot shoulders to 11 foot lanes and 6 foot shoulders ¹	Urban	Urban and suburban arterials	Total	6.6	0.934	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 11 foot lanes and 7 foot shoulders ¹	Urban	Urban and suburban arterials	Total	9.7	0.903	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 11 foot lanes and 8 foot shoulders ¹	Urban	Urban and suburban arterials	Total	12.6	0.874	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 11 foot lanes and 9 foot shoulders ¹	Urban	Urban and suburban arterials	Total	15.5	0.845	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 11 foot lanes and 10 foot shoulders ¹	Urban	Urban and suburban arterials	Total	18.3	0.817	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 13 foot lanes and 0 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-23.8	1.238	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 13 foot lanes and 1 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-16.8	1.168	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 13 foot lanes and 2 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-10.1	1.101	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 13 foot lanes and 3 foot shoulders ¹	Urban	Urban and suburban arterials	Total	-3.8	1.038	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 13 foot	Urban	Urban and suburban arterials	Total	2.1	0.979	IL (22)

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
	lanes and 4 foot shoulders ¹						
Segments	Convert 12 foot lanes and 6 foot shoulders to 13 foot lanes and 5 foot shoulders ¹	Urban	Urban and suburban arterials	Total	7.6	0.924	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 13 foot lanes and 6 foot shoulders ¹	Urban	Urban and suburban arterials	Total	12.9	0.871	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 13 foot lanes and 7 foot shoulders ¹	Urban	Urban and suburban arterials	Total	17.9	0.821	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 13 foot lanes and 8 foot shoulders ¹	Urban	Urban and suburban arterials	Total	22.5	0.775	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 13 foot lanes and 9 foot shoulders ¹	Urban	Urban and suburban arterials	Total	26.9	0.731	IL (22)
Segments	Convert 12 foot lanes and 6 foot shoulders to 13 foot lanes and 10 foot shoulders ¹	Urban	Urban and suburban arterials	Total	31.1	0.689	IL (22)
Segments	Extend on-ramp acceleration lane by 30 meters (about 100 feet)	Urban and rural	Grade-separated junctions	Total	11	0.89	Not specified (10)
Segments	Extend off-ramp deceleration lane by 30 meters (about 100 feet)	Urban and rural	Grade-separated junctions	Total	7	0.93	Not specified (10)
Segments	Install passing relief lane	Rural	Two-lane highways	Total Fatal/Injury Target (headon, rear-end, run-off-the-	33 29 47	0.67 0.71 0.53	MI (3)

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
				Peak month	46	0.54	
				(June, July,			
				August)			
				Off-peak month	28	0.72	
Segments	Increase lane width by 1	Urban	Two-lane roads	PDO	6.6	0.934	IN (42)
	foot ¹			Fatal/Injury	14.2	0.858	
			Multilane roads	PDO	2.0	0.980	
				Fatal/Injury	14.1	0.859	
		Rural	Two-lane roads	PDO	8.2	0.918	
				Fatal/Injury	7.4	0.926	
			Multilane roads	PDO	17.7	0.823	
				Fatal/Injury	21.2	0.788	
Segments	Increase lane width by 2	Urban	Two-lane roads	PDO	12.7	0.873	IN (42)
8	feet ¹			Fatal/Injury	26.3	0.737	
			Multilane roads	PDO	4.0	0.960	
				Fatal/Injury	26.2	0.738	
		Rural	Two-lane roads	PDO	15.7	0.843	
		1107107	1 110 10110 10110	Fatal/Injury	14.3	0.857	
			Multilane roads	PDO	32.2	0.678	
			Tyraitifalio Todas	Fatal/Injury	37.9	0.621	
Segments	Increase lane width by 3	Urban	Two-lane roads	PDO	18.4	0.816	IN (42)
~ • g	feet ¹			Fatal/Injury	36.8	0.632	(()
			Multilane roads	PDO	6.0	0.940	
			171011111111111111111111111111111111111	Fatal/Injury	36.6	0.634	
		Rural	Two-lane roads	PDO	22.6	0.774	
		Tturur	1 Wo faire foads	Fatal/Injury	20.7	0.793	
			Multilane roads	PDO	44.2	0.558	
			Traitmane roads	Fatal/Injury	51.1	0.489	
Segments	Increase lane width by 4	Urban	Two-lane roads	PDO	23.8	0.762	IN (42)
Segments	feet ¹	Croun	1 wo faire roads	Fatal/Injury	45.7	0.543	11 (12)
			Multilane roads	PDO	7.9	0.921	
			Withthane roads	Fatal/Injury	45.6	0.544	
		Rural	Two-lane roads	PDO	28.9	0.711	
		Kulai	1 wo-talle roads	Fatal/Injury	26.6	0.711	
			Multilane roads	PDO	54.0	0.734	
			with that it is a second	Fatal/Injury	61.5	0.480	
Shoulder	Ingrange might shoulder	Urban	Two-lane roads	PDO			IN (42)
	Increase right shoulder	Orban			1.7	0.983	IN (42)
Treatment	width by 1 foot ¹		Multilane roads	PDO	1.6	0.984	

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
		Rural	Two-lane roads	PDO	2.3	0.977	
				Fatal/Injury	2.8	0.972	
			Multilane roads	Fatal/Injury	4.0	0.960	
Shoulder	Increase right shoulder	Urban	Two-lane roads	PDO	3.5	0.965	IN (42)
Treatment	width by 2 feet ¹		Multilane roads	PDO	3.1	0.969	
		Rural	Two-lane roads	PDO	4.6	0.954	
				Fatal/Injury	5.4	0.946	
			Multilane roads	Fatal/Injury	7.9	0.921	
Shoulder	Increase right shoulder	Urban	Two-lane roads	PDO	5.1	0.949	IN (42)
Treatment	width by 3 feet ¹		Multilane roads	PDO	4.7	0.953	, ,
	-	Rural	Two-lane roads	PDO	6.8	0.932	
				Fatal/Injury	8.0	0.920	
			Multilane roads	Fatal/Injury	11.6	0.884	
Shoulder	Increase right shoulder	Urban	Two-lane roads	PDO	6.8	0.932	IN (42)
Treatment	width by 4 feet ¹		Multilane roads	PDO	6.2	0.938	\ /
		Rural	Two-lane roads	PDO	8.9	0.911	
				Fatal/Injury	10.6	0.894	
			Multilane roads	Fatal/Injury	15.2	0.848	
Shoulder	Increase left/inside	Urban	Multilane roads	Fatal/Injury	18.5	0.815	IN (42)
Treatment	shoulder width by 1 foot ¹	Rural	Multilane roads	PDO	4.3	0.957	, ,
				Fatal/Injury	6.7	0.933	
Shoulder	Increase left/inside	Urban	Multilane roads	Fatal/Injury	33.6	0.664	IN (42)
Treatment	shoulder width by 2 feet ¹	Rural	Multilane roads	PDO	8.5	0.915	\ /
				Fatal/Injury	13.0	0.870	
Shoulder	Increase left/inside	Urban	Multilane roads	Fatal/Injury	45.9	0.541	IN (42)
Treatment	shoulder width by 3 feet ¹	Rural	Multilane roads	PDO	12.4	0.876	` /
	-			Fatal/Injury	18.9	0.811	
Shoulder	Increase left/inside	Urban	Multilane roads	Fatal/Injury	56.0	0.440	IN (42)
Treatment	shoulder width by 4 feet ¹	Rural	Multilane roads	PDO	16.2	0.838	` ,
				Fatal/Injury	24.3	0.757	
Signs	Install chevron signs on	Rural	Two-lane	Total	4.3	0.957	WA (37)
<i>→</i>	horizontal curves		highways	Fatal/Injury	16.4	0.836	, , ,
				Lane departure	5.9	0.941	
				Nighttime	24.5	0.755	
				Nighttime lane	22.1	0.779	
				departure			
Signs	Increase retroreflectivity	Urban and	Three- and	Total	1.2	0.988	CT, SC (28)
S	of stop signs	rural	four-leg stop-	Fatal/Injury	6.7	0.933	,

Category	Countermeasure	Area Type	Facility Type	Crash Type	CRF	CMF	States and (reference number)
			controlled	Right-angle	-1.2	1.012	
			intersections	Rear-end	-2.2	1.022	
				Nighttime	4.4	0.956	
				Daytime	-0.1	1.001	
Signs	Install flashing beacons at stop-controlled	Urban	Two-lane highways	Angle	-12	1.12	NC, SC (36)
	intersections	Rural	Two-lane highways	Angle	16	0.84	
Speed Management	Lower posted speed by 15–20 mph	Urban and rural	Nonlimited access highways	Total	6	0.94	AZ, CA, CO, CT, DE, ID, IL, IN, ME, MD, MA, MI, MS, NE, NJ, NM, OH, OK, TN, TX, VA, WV (27)
Speed Management	Lower posted speed by 10 mph	Urban and rural	Nonlimited access highways	Total	4	0.96	AZ, CA, CO, CT, DE, ID, IL, IN, ME, MD, MA, MI, MS, NE, NJ, NM, OH, OK, TN, TX, VA, WV (27)
Speed Management	Lower posted speed by 5 mph	Urban and rural	Nonlimited access highways	Total	-17	1.17	AZ, CA, CO, CT, DE, ID, IL, IN, ME, MD, MA, MI, MS, NE, NJ, NM, OH, OK, TN, TX, VA, WV (27)
Speed Management	Raise posted speed by 5 mph	Urban and rural	Nonlimited access highways	Total	8	0.92	AZ, CA, CO, CT, DE, ID, IL, IN, ME, MD, MA, MI, MS, NE, NJ, NM, OH, OK, TN, TX, VA, WV (27)
Speed Management	Raise posted speed by 10–15 mph	Urban and rural	Nonlimited access highways	Total	15	0.85	AZ, CA, CO, CT, DE, ID, IL, IN, ME, MD, MA, MI, MS, NE, NJ, NM, OH, OK, TN, TX, VA, WV (27)
Speed Management	Set appropriate speed limit	Urban and rural	Not specified	Total	28	0.72	Based on KY, MO, MT (13)

¹ CRF/CMF given in the form of a function in the CMF Clearinghouse or in the report/paper. For this table, the CRFs/CMFs have been discretized for various levels of the safety countermeasure. The user is referred to the source (provided by the reference number) for the original functional form.

CRF/CMF Sources

- 1. Ahmed, M. M., Abdel-Aty, M., & Park, J. (2015). Evaluation of the safety effectiveness of the conversion of two-lane roadways to four-lane divided roadways: Bayesian versus empirical bayes. *Transportation Research Record: Journal of the Transportation Research Board*, 2515, 41–49.
- 2. Appiah, J., Naik, B., Wojtal, R., & Rilett, L. R. (2011). Safety Effectiveness of actuated advance warning systems. *Transportation Research Record: Journal of the Transportation Research Board*, 2250, 19–24.
- 3. Bagdade, J., Ceifetz, A., Myers, M., Redinger, C., Persaud, B. N., & Lyon, C. A. (2012). Evaluating performance and making best use of passing relief lanes. Michigan Department of Transportation.
- 4. Bahar, G., Mollett, C., Persaud, B., Lyon, C., Smiley, A., Smahel, T., & McGee, H. (2004). *Safety evaluation of permanent raised pavement marker* (NCHRP Report 518). Transportation Research Board.
- 5. Bham, G. H., Long, S., Baik, H., Ryan, T., Gentry, L., Lall, K., & Schaeffer, B. (2010). *Evaluation of variable speed limits on I-270/I-255 in St. Louis*. Missouri Department of Transportation.
- 6. Bullough, J. D., Donnell, E. T., & Rea, M. S. (2013). To illuminate or not to illuminate: Roadway lighting as it affects traffic safety at intersections. *Accident Analysis and Prevention*, *53*, 65–77.
- 7. Davis, G. A., Hourdos, J., & Xiong, H. (2014). *Estimating the crash reduction and vehicle dynamics effects of flashing LED stop signs*. Minnesota Department of Transportation.
- 8. Edara, P., Sun, C., & Breslow, S. (2014). *Evaluation of J-turn intersection design performance in Missouri*. Missouri Department of Transportation.
- 9. El-Basyouny, K., Sayed, T., El Esawey, M., & Pump, J. (2012). Investigating effect of collision aggregation on safety evaluations with models of multivariate linear intervention: Case study of program to upgrade signal heads. *Transportation Research Record: Journal of the Transportation Research Board*, 2280, 110–117.
- 10. Elvik, R., & Vaa, T. (2004). The handbook of road safety (1st ed.). Oxford: Elsevier.
- 11. Fitzpatrick, K., Park, E. S., & Schneider IV, W. H. (2008). Potential accident modification factors for driveway density on rural highways: From Texas data. Transportation Research Record: Journal of the Transportation Research Board, 2083, 49–61.
- 12. Fitzpatrick, K., & Park, E. S. (2010). Safety effectiveness of the HAWK pedestrian crossing treatment. Texas Transportation Institute and Federal Highway Administration.
- 13. Gan, A., Shen, J., & Rodriguez, A. (2005). *Update of Florida crash reduction factors and countermeasures to improve the development of district safety improvement projects*. Lehman Center for Transportation Research and Florida Department of Transportation Safety Office.
- 14. Gross, F., Jovanis, P. P., Eccles, K., & Chen, K.-Y. (2009). Safety evaluation of lane and shoulder width combinations on rural, two-lane, undivided roads. Federal Highway Administration.
- 15. Gross, F., Lyon, C., Persaud, B., & Srinivasan, R. (2013). Safety effectiveness of converting signalized intersections to roundabouts. *Accident Analysis and Prevention*, *50*, 234–241.
- 16. Hallmark, S. L., Hawkins, N., & Smadi, O. (2015). *Evaluation of dynamic speed feedback signs on curves: A national demonstration project*. Iowa State University and Federal Highway Administration.

- 17. Harkey, D., Srinivasan, R., Baek, J., Council, F., Eccles, K., Lefler, N., & Bonneson, J. (2008). *Accident modification factors for traffic engineering and ITS improvements* (NCHRP Report 617). Transportation Research Board.
- 18. Harwood, D. W., Bauer, K. M., Potts, I. B., Torbic, D. J., Richard, K. R., Kohlman Rabbani, E. R., Hauer, E., Elefteriadou, L., & Griffith M. S. (2003). Safety effectiveness of intersection left- and right-turn lanes. *Transportation Research Record: Journal of the Transportation Research Board*, 1840, 131–139.
- 19. Hovey, P., & Chowdhury, M. (2005). *Development of crash reduction factors*. University of Dayton and Ohio Department of Transportation.
- Hummer, J. E., Cunningham, C. M., Srinivasan, R., Warchol, S., Claros, B., Edara, P., & Sun, C. (2016). Safety evaluation of seven of the earliest diverging diamond interchanges installed in the United States. *Transportation Research Record: Journal of the Transportation Research Board*, 2583, 25–33.
- 21. Kay, J., Savolainen, P. T., Gates, T. J., Datta, T. K., Finkelman, J., & Hamadeh, B. (2015). Safety impacts of a statewide centerline rumble strip installation program. *Transportation Research Record: Journal of the Transportation Research Board*, 2515, 34–40.
- 22. Le, T. Q., & Porter, R. J. (2013). Safety effects of cross section design on urban and suburban roads. Transportation Research Board 92nd Annual Meeting. Washington, D.C.
- 23. Lyon, C., Persaud, B., & Eccles, K. (2015). *Safety evaluation of centerline plus shoulder rumble strips*. Federal Highway Administration.
- 24. Mauga, T., & Kaseko, M. (2010). Modeling and evaluating safety impacts of access management features in the Las Vegas, Nevada, Valley. *Transportation Research Record: Journal of the Transportation Research Board*, 2171, 57–65.
- 25. McGee, H., Taori, S., & Persaud, B. (2003). *Crash experience warrant for traffic signals* (NCHRP Report 491). Transportation Research Board.
- 26. Park, Y.-J., & Saccomanno, F. F. (2005). Collision frequency analysis using tree-based stratification. *Transportation Research Record: Journal of the Transportation Research Board*, 1908, 121–129.
- 27. Parker Jr., M. R. (1997). Effects of raising and lowering speed limits on selected roadway sections. Federal Highway Administration.
- 28. Persaud, B., Lyon, C., Eccles, K., Lefler, N., & Amjadi, R. (2008a). *Safety evaluation of increasing retroreflectivity of STOP signs*. Federal Highway Administration.
- 29. Persaud, B., Lyon, C., Eccles, K., Lefler, N., Carter, D., & Amjadi, R. (2008b). *Safety evaluation of installing center two-way left-turn lanes on two-lane roads*. Federal Highway Administration.
- 30. Persaud, B., Lyon, C., Eccles, K., Lefler, N., & Gross, F. (2009). *Safety Evaluation of offset improvements for left-turn lanes*. Federal Highway Administration.
- 31. Qin, X., Bill, A., Chitturi, M., & Noyce, D. A. (2013). *Evaluation of roundabout safety*. Transportation Research Board 92nd Annual Meeting, Washington, D.C.
- 32. Retting, R. A., Chapline, J. F., & Williams, A. F. (2002). Changes in crash risk following re-timing of traffic signal change intervals. *Accident Analysis and Prevention*, 34(2), 215–220.
- 33. Rodegerdts, L., Blogg, M., Wemple, E., Myers, E., Kyte, M., Dixon, M., & Carter, D. (2007). *Roundabouts in the United States* (NCHRP Report 572). Transportation Research Board.

- 34. Simpson, C. L., & Hummer, J. E. (2010). Evaluation of the conversion from two-way stop sign control to all-way stop sign control at 53 locations in North Carolina. *Journal of Transportation Safety & Security*, 2, 239–260.
- 35. Simpson, C. L., & Troy, S. A. (2013). Safety effectiveness of "vehicle entering when flashing" signs: Evaluation of 74 Stop-controlled intersections in North Carolina. *Transportation Research Record: Journal of the Transportation Research Board*, 2384, 1–9.
- 36. Srinivasan, R., Carter, D., Eccles, K., Persaud, B., Lefler, N., Lyon, C., & Amjadi, R. (2008). Safety Evaluation of Flashing Beacons at STOP-Controlled Intersections. Federal Highway Administration.
- 37. Srinivasan, R., Baek, J., Carter, D., Persaud, B., Lyon, C., Eccles, K., & Lefler, N. (2009). *Safety evaluation of improved curve delineation*. Federal Highway Administration.
- 38. Srinivasan, R., Baek, J., & Council, F. (2010). Safety Evaluation of Transverse Rumble Strips on Approaches to Stop-Controlled Intersections in Rural Areas. Journal of Transportation Safety & Security, 2(3), 261–278.
- 39. Srinivasan, R., Baek, J., Smith, S., Sundstrom, C., Carter, D., Lyon, C., & Lefler, N. (2011). *Evaluation of safety strategies at signalized intersections* (NCHRP Report 705). Transportation Research Board.
- 40. Stamatiadis, N., Pigman, J., Sacksteder, J., Ruff, W., & Lord, D. (2009). *Impact of shoulder width and median width on safety* (NCHRP Report 633). Transportation Research Board.
- 41. Tarko, A. P., Villwock, N. M., & Blond, N. (2008). Effect of median design on rural freeway safety: Flush medians with concrete barriers and depressed medians. *Transportation Research Record: Journal of the Transportation Research Board*, 2060, 29–37.
- 42. Tarko, A. P., Dey, A., & Romero, M. A. (2015). Performance Measure that Indicates Geometry Sufficiency of State Highways. West Lafayette, Indiana: Joint Transportation Research Program, Indiana Department of Transportation and Purdue University.
- 43. Torbic, D. J., Hutton, J. M., Bokenkroger, C. D., Bauer, K. M., Harwood, D. W., Gilmore, D. K., Dunn, J. M., Ronchetto, J. J., Donnell, E. T., Sommer, III, Garvey, P., Persaud, B., & Lyon, C. (2009). *Guidance for the design and application of shoulder and centerline rumble strips* (NCHRP Report 641). Transportation Research Board.
- 44. Tsyganov, A. R., Warrenchuk, N. M., & Machemehl, R. B. (2009). *Driver performance and safety effects of edge lines on rural two-lane highways*. Transportation Research Board 88th Annual Meeting, Washington, D.C.
- 45. Villwock, N., Blond, N., & Tarko, A. P. (2009). *Safety impact of cable barriers on rural interstates*. Transportation Research Board 88th Annual Meeting, Washington, D.C.
- 46. Zeng, H., Fontaine, M. D., & Smith, B. L. (2014). Estimation of the safety effect of pavement condition on rural, two-lane highways. *Transportation Research Record: Journal of the Transportation Research Board*, 2435, 45–52.
- 47. Tarko, A. P., Romero, M., Hall, T., & Sultana, A. (2018). *Updating the crash modification factors and calibrating the IHSDM for Indiana* (Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2018/03). West Lafayette, IN: Purdue University.
- 48. Zhao, G., Li, S., & Jiang, Y. (2016). *Safety and cost performance of intersection lighting* (Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2016/17). West Lafayette, IN: Purdue University. https://doi.org/10.5703/1288284316340

About the Joint Transportation Research Program (JTRP)

On March 11, 1937, the Indiana Legislature passed an act which authorized the Indiana State Highway Commission to cooperate with and assist Purdue University in developing the best methods of improving and maintaining the highways of the state and the respective counties thereof. That collaborative effort was called the Joint Highway Research Project (JHRP). In 1997 the collaborative venture was renamed as the Joint Transportation Research Program (JTRP) to reflect the state and national efforts to integrate the management and operation of various transportation modes.

The first studies of JHRP were concerned with Test Road No. 1—evaluation of the weathering characteristics of stabilized materials. After World War II, the JHRP program grew substantially and was regularly producing technical reports. Over 1,600 technical reports are now available, published as part of the JHRP and subsequently JTRP collaborative venture between Purdue University and what is now the Indiana Department of Transportation.

Free online access to all reports is provided through a unique collaboration between JTRP and Purdue Libraries. These are available at http://docs.lib.purdue.edu/jtrp.

Further information about JTRP and its current research program is available at http://www.purdue.edu/jtrp.

About This Report

An open access version of this publication is available online. See the URL in the citation below.

Tarko, A. P., Romero, M., Lizarazo, C., & Pineda, R. (2020). *Statistical analysis of safety improve-ments and integration into project design process* (Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2020/09). West Lafayette, IN: Purdue University. https://doi.org/10.5703/1288284317121